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ABSTTACT

In the past few years some entirely new bruadband antennas have
irbeen developed. At the present time it is easy to construct practical
antennas which have cssentially the same pattern and impedance over
a8 10 to 1, or larger, frequency range. One group of broadband antennas
utilizes the ureful property of the equiunguler (logarithmic) spiral
curve that n scale change and a rotation are equivalent,

In this paper theoretical methods for determining the elcctric
and magnetic fields produced by an equiangular spiral structure are
considered. The equiangular spirsl structure consists cf two thin
conducting strips (arms) with edges defined by equiangular spiral
curves developed on a cone. . The structure is considered infinite in
extent with an arbitrary rate of spirsl and an arbitrary cone angle. The
planar equiangular spiral is included as a specisl case. To ai1ke the
problem amenable to analysis it is necessary in some cases to restrict
the gaps between the spiral arms to be small.

Expressions for the static (DC) electric fields are derived from
separated solutions of Laplace's equation. The static electric fields
are shown to be a function of only two variables. The separated solutions
are a product of the circular functions, and associated Legendre functions
of imaginary degree and real order. An infinite summation of the separated
solutions is necessary to meet the required boundary conditions. For
a small gap between the spiral arms the coefficients in the summ:tiun

are expressed independently in a simple mathematical form. For an



arbitrary gap the coefticients cin rot be de‘ermined independently, and
‘he solutions are approximated by a finite sum. The least squares
criterion is csed to obtein the best values of the coefficients, and
the coefficients are expressed as the simultaneous solutions of a finite
set of I xnear algebraic equations. "

for the electromagnetic probles, separated solutions of the vector
Helmholtz equation are obtained in an oblique spiral coordinate system.
The separated solutions are similar to those of the spherical coordinate
sysstem. They are a product of Bessel functions of complex order,
associated Legendre functions of complex degree and resl order, and the
circular functions. A doutle summation is required to satisfy the
boundary conditiong. Expressions for the ~oefficients in the summation
are derived in terms of the tangential electric fields in the gap
b2 ' ween the spiral arms. |

For the special crse of a balanced antenna with narrow gaps between
the arms, expressions are derived for the fields produced in the gaps
by & source at the origin. These solutions make avuilable a means of
caiculating the input impedance, the current distribution, and the

pattern of an equiangular spiral antenna.
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1 INTRODUCT ION

Recent years have sevn the development and use of a rnumber of
broadtand antennas. Experimental techniques have been used to provide
entirely new types of antenna structures which maintain essentially
the same pattern and impedance characteristics over a 10 to 1, or
larger. frequency range. One basis for the design cf broadband
antennas has teen the "angle method" 1 whereby the boundaries of
the antenna are specified primarily in terms of angles, and thus
lengths are avuided which are resonant at one frequency and not at
others The biconical antenna, the disc-cone, the fin, and the
equiangular spiral are all examples of practical antenna structures
vhich are specified primarily in terms of ang.¢s.

While the angle concept specifies in general what boundaries
can be used to construct an antenna which might be brcadband, it
does not predict vhat the actual pattern or impedance will be.

To date almost all of the development of broadband antennas has

been of an experimental nature with only a minimum amount of
theoretical development. SChGIKUHOffz has derived tleoretical
expressions for the pattern and mpedance of the infinite biconicel
structure by showing that the TEM moue is excited by a source at

the origin. Carrel3 has devised methods for analyzing theoretically
an infinite biconical s'ructure of arbitrary cross section showing
that the infinite structure has characteristics which are i1ndependent
of frequency. However, the finite over-all size required in a

practical antenna gives rise to an ''end effect'' which serinusly



liwmits the bandwidth obtainable with the biconical antennas of
arbitirary cross section,

Using the "'angle method'', Rumsey in 1954 proposed a clz<s of
antennas basod on the equiangular spiral. The balanced planar
equiangular spiral has been very thoroughly investigated experimeantally
by nyson‘ who has shown that it is easy to comstruct a practical
antenna having frequency independent characteristics over a 20 to 1l
bandwidth, He has also shown that over a range of frequencies the
input impedance and the pattern of this antenna are not affected
by increasing the length of the untcn;a arms. Thus, the equiangular
spiral structure does not have an appreciable ''end effect,' snd
after a critical size is passed the characteristics of the finite
sntenna are the same as for the infinite structure.

Experimentally, the balanced planar version of the equiangular
spiral antenna radiates a circularly polarized, bidirectional pattern,
with the two lobos of the pattern perpendicular to the plane uf the
antenna. Theoretically, the pattern rotates about a line perpendicular
to the plane of the antenna as the frequency is changed. Howeve-,
in the useful froquency range the pattern is nsarly symmetrical
about the axis of rotation, and, therefore this rotation has a
saall effect on the experimental patterns of th: antenna. Recently,
Dylou5 hus shown that the balanced equiangular spiral developed
on. a cone can be made into a practical broadband ant.mna with s
unidirectionsal pattern.

This paper preaents the results of a theoretical study of the

electric and magnetic fields produced by an equiangular spiral structure.
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As the boundartu of the equiangular spiral antenna can be specified
in reasonably simple mathematical terms, it was felt worthwkile to
investigate methods of obtaining exact theoretical expressions for

*he fields. To obtain a feeling for the problem, the static (DC)
electric fields were determined first by obtaining separated solutions
of Laplace's equation. The static solutions pointed *he way tq.,l;vx A |
set of coordinats variables which were used to obtain the oloctr;;-
magnetic fields as solutions of the vector Helmhnltz equation.

While it was desired to determine mathematical expressions for tLhe
Lields under the most generasl conditions, several simplifying
assumptions were necessary. In all cases the spiral structure is
considered infinite in extent, and the spirals are assumed to
continue indefinitely close to the origim. Also, in some places

in the anal;sis the gap between the spirsl arms is assumed arbitrarily

small.




2. THE EQUIANGULAR BPIRAL ANTENNA

3.1 The Bquiangular Spirsl

A general equiangular (or logarithmic) spiral curve 'cnﬂn be defined as the

intersection of the two surfaces. |
r=gs ¢‘¢
4]

snd " (2-1)

vhere 8, 8, and @, are real parameters, and r, 3, and ¢ are the conventional

spaorical coordinates shown in Pig. 1.

FIGURE 1 SPEERICAL COORDINATE SYSTEM



The equiangular spiral curve has the useful property that a change
in scale is equivalent to a rotatioa. [f the scale of the coordinate

system is changed by a factor ¢ a that

r/ = Cr (3-2)

the defining equations for the spiral can be written as

/ ¢ (¢ -

r =cy, e®Puas ot +&y) (3-3)

® =0
where

¢, =WUn c)/u : (3-4)

Thus a change in scale by the !ac\iér c produces the samp spiral as would
be obtained by rotating the original curve by an u‘io (4n c)/u about the

polar axis.

3.2 The Equiangular Spiral Antenna

BEquiangular spiral curves can be used to define the boundaries of an
antenna by using four curves having the same values for the parameters a
and @, , but different values 81, 8, 83, and s4 for the paranmeters s,.

The parameters s;, s,, 83, and sq must be chosen such that

N
'1<'2<'3< l‘<lli . (3-5)

One ara of the antenna is formed by placing a thin conducting strip on
the cone @ = ©, such that the edges cf the strip coincide with the spirals

corresponding to 8y * '1 and 8,= 8 In a similar sanuner another strip

3"
with edges coinciding with the spirals 8,"= % snd s, " -‘ forms a second

ara. Near the origin the two arass of the antenna come arbitparily close

together, and the origin is a convenient place to excite the antenna.

e —— - ———— 4



Exasples of equiangular spiral antennas are shown in Pigs. 2 and 3.

| The infinite equiangular spiral anterna defined above has the use-
ful p;omty that a scale change is equivalent to a rotation. This
assures that the space variastions of the fields produced by differeat
excitation frequencies can be related simply dy rotating the reference
axis of the coordinate system. Therefore, the pattern of the infinite

equiangular spiral anteamma rotates as the excitation frequency ia changed,

and the input impedance is independent of frequeancy.
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PIGURE 2 THE EQUIANGULAR SPIR:.L STRUCTURE DEVELOPED IN THZ FIANE 9, - €/2
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THE IQUIANGULAR SPIRAL STRUCTURE
DEVELOPED ON THE COME O = 232.5°.

FIGURE 3.



3. THE STATIC (DC) ELECTRIC FiXLDS

3.1 Laplace’'s Bquation with Spiral Veriables

Vith one of the arms of sn equiangular spiral structurs at the

potential ¢ V_ and the other at -V , the poteatial ¥(r,0,9) at any point

in .aocc"’ is given by the finite solution of Laplace’s equation,
\ _ .
Viéy=o (3-1)

which satisfies the boundary conditions at 9 = Oo that

V= W_  for s Rl uﬁ.¢< s, o3Tka

. 2%ka _ __-ad
*--Vo for s, ¢ <re "<s, e

k=0, %, % ..... (3-2)

‘The potential¥and the houndary conditlono are functions of all three of
the coordinate variables, but the houndary conditions are expressed in
terms of 0 and rc-w. This suggests the introduction of a new set of

variables, one of which is ro""'?. A set of variablzs vhléh has been

found odavenient is

r=r
< -ro‘.¢

=0 . (3-’)

Laplace’s equation in spheri-al coordinates’

3 1 8 a3 & 1 o 1 3
V¥ =~ (r 3—)+ ‘-E(-mo ) ¢ — ’—:—*-_-o
rd Br r r sin @ % rz u;.z (-] .¢2




provides a ccrnvenient starting point, and in terms of 7, @, and » Eq. 34

becomes
10 a0 28 10 W a0
v - "HET W T REtEN Wt E, T N W
. ( )
s+ 52— 2 (sin @ ) = 0 (3-3)
F’uin‘“ '3

" with W(r, 0, O = ¥(F,0,8).

The houndary conditions on V are independent of F. If Eq. 3-5 is
independent of r when '7/”' is assumed xero, the ¥V which satisfies the
- boundary conditions is independent of T. Assuming W/ﬁ" = 0 in BEq. 3-5

gives

d 387, W2, 8 &% 1 8 o
} ™ (s ";) +.1n o-r’(n ,-.-) +.1“°-5(31n0“) =0, (3-6)

which is independent of F, and the sssumption is justified.

Therefore, the original three dimensional problem in spherical coordinates
is reduced to a two dimensional probleam, and the ststic poteantial can be
expressed in terms of only two variables s and 0.

3.2 Separated Solutions for laplaces kquation

A further simplification in the two dimensional Laplace’s equation and

the boundary condi.tions is obtained by use of the substitutions
Txfns, V(O T) =Vir, &, 8
which reduces Rq. 3-6 to

3 2
a y W 1 8 oy
) =~ & + : (sin @ x=) =0 (3-7)
sind o 8.3 ¥ Ysine Je 7 |

(1 +

. — . wo-



Lettiag Ta ™ in L. the boundary conditions in terms of 6 . T are

v~+vo !or11+2nk<f<;’rz+:nk

V==Y forv, +2Mak < T <<T, +# 2Wak
o 3 4
=0, 31,23, . ... (3-8)
which are periodic in T with period 2Ma. Separate: solutions of

Eq. 3-7 can be obtained by assuning a solution of the fora

n
V. IA-QDJ‘T . (3-9)

where

A. is a complex constant dependent o.ly on :n,

© » 0O (0) 1is independent of T,

B is required to be an integer to have solutions with a
periodicity in T agreeing with the boundary couditions. The use of a
sun of complex functions to represent a real potential is convenient as
separated solutions of the form © (@) cos ; T or © (@) sin -:-T , individu-
ally, will not satisfy BEq. 3-7. It is shown in Appendix A that, {f t_lu
poteatial is assumed real at @ = Oo,tlu solutions presently obtained
t¢ive real values for the potefitial for all 6 and v. It is found that

Vv, will satisfy Eq. 3-7 1f © natisties

2 .
—-—!d 6+ctn0%g+[(.1 f)(l *J':)"""!'z""’]e =0 . (3-10)
de sin 6

E{. 3-10 is a form of the associated Legendre equation of degree j E and



12
order m, Many of the references on ths associated Legendre equation
consider only the special case of integral order and degree. References
which consider the general case of complex degree and order are Hobmrm,7
S‘nm,alw. Schelkunof 19 The notation used in the following is the same as
used by Hobson,

Ths {wo linearly independent solutions of Eq. 3-10 are the arsociated

" Legendrs functions of the first kind P;‘_(cou @) and the second kind

2 i
Q‘!;. \cos &), For integsral m and real 6, P;Q‘ (cos ©) is finite for all ©

ux:mpt =17, and Q:% ‘(co- ®) is finite for all @ except © = 0O or 7.
As Q'ﬂ, (cos @) becomes iunfinite at both @ =~ 0 and ¥, it is not useful in
the representation of the desired potential function and need not be
considered further. Jor @ ml and m a positive integer, P;’ (cos @) is

given by

_m T(melsy?) n
) X 2 X '(1:‘);['(.-1%; n+1+,j-‘!; n+l; sinz %) (3-11)

2m I'(--+1+JE)

#;*mo. @) =

and for m a negative integer by

Pr (cos @) = ain_ @ 'ﬁ(-l-J-.-, -n+1+1-!; -m4l; sinz p (3-12)
J n, [ a a 2
a 2 (-m).
vhere F is the hypergeometric fumnction
. a-p +1) +1) 2 _
F(nl ﬂ’ Y. z)‘l*ltyz" .2.Y(Y‘1)z S (3 13)

and I represents the gamma tunctionl®

The fact that there are no solutions of Eq. 3-10 which are finite

o  ——
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fox all real values of @ u‘.ﬁu it necessary to divide the space about the
spirsl structure into two regions with a different hthmtictl representa-
tion for the fielda in each of the regions. The logical boundary to use is

the cone @ = Oo as shown in Pig. 4.

8=0
REGION I
0<e
s}
e2ta
/’
B = B‘
¢
! REGION 11
II 8 x 33 N
1/ e e()
/g =
7 B = 82
*
, 8 = 81
/
, -
,\'/ 8 = s,e 2Wa
; CONSTANT ¢ PLANE
¥/
;
4
e =r

FIGURE 4 BOUNDARY COMDITIUNS AT © = O .

D]

In region I for 0 < O , I?_-_ (cos ) cam be used in representing the
Ja

potential, and in region II for O >Qo, P;' (- cos @) is appropriate.
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On the boundary surface O = ao‘tha potential from both regions mumt he @vo
or /)-Yo on the arus of the spiral; also, the oxprqnxom for the potential
from the two regions and their normal derivatives must satch along the
gap between the arms. The .Jorced soparation‘ot the potential expressions
into two regions greatly complicates the problem as it becomes a boundary
valué problem with mixed boundary conditions,

The appropriate separated solutions of the two dimensional Laplace!s

equation with spiral variables are

o
"V =A P (cos @ e . )
| ] n m - 0
\ry
and (3-14)
Ty
V =B P _ (-cos 8) e e
= a o m ~o
a

A single value of min Eqs. 3-14 is not sufficient to meet the required
boundury conditions, but s summation of terms of this form ove” all
integer values of m vill be found adequate., Tae expressions for the
potential at any point are

o L
vV@e,™) = \ A P" (cos®) e * 858
»n J*! 0
* [ |
and ‘;"" e (3-15)
v(e,T) = § B P (-co-0) e * 020
m n (o
b J:
| L . -]

Expressions for the coefficients A- and B. will be derived in the

succeeding sections.

3.3 The Potentisl in [erms of Potentisl a' @ =6

The coefficients A. and B. will be determined firat in terms of
the potential distribution V(Oo,'r) existing on the boundary 6 - Oo
The potcontial on the b 'indary is a continuous periodic function of T,




and may be expanded in a Fourier series as

=
V(QO,T) = | C- e (3-16)
A = =00 \
vith the coefficients C_ given by
|
T +3Na
1 -Js-r
1 'Y
C. = V(GO,T) e dr (3-17)

i
I'rom Eqs. 3-15 and 3~-168 the relations between A., Bn’ and C- are

n
P:- (cos Oo)
and . (3-18)
o C.

B =

n P". (-cos 00)
J._

A =
n

lgs. 3-17 and 3-18 express the coefficients A- and B‘ in terms of an

arbitrary distribution of potential in the gap with respect to v, and
they assure that tho potentials from regions I and II match at the

gap. The potential distributinn in the gap is not arhitrary, but
is restricted by the requirement that the normal derivatives of the
potential match at the gap.

3.4 Potantial on the Boundary for s Small Gap

As the gaps betweecn the spiral arms are sade small

Tz—o Yfl apd T‘m—“'l + 3m (3-19

Yor arbitrarily small gaps the potential is specified over the entire

cm':'ou

Vx+V° 71+~‘l<1<1 + 2¥ak = T, + 27k

2 3

V’s'vo Tawﬁllk<'r('r‘ 1

k=0, +1, +2, ... (3-20)

+ 2gak = T_ 4+ 2Wa(k+l)




C‘ is given by "*72 ﬂ"!‘r ﬁ"rl+21£l ~}!T
c-»-l-’( V e *ar - v e ¥dr
a 271 J o } o
T oy
1 2 (3-21)
" C (T2 T
Co = Vo [ Tra =
s n
C = .{Z.‘Z [ e 3‘:"2’. e-J:"ﬂ
‘m 7m L 1 40 ¢ (3-22)

Substitution of C. from Eq. 3-22 into Eqs. 3-18 and 3-22 gives an
explic.t expression for the potential at any point in terms of the

paxrazeters a, 1'1, 72, and 90 as

0
vo[Tath o1 1\ [ -2 -7 P:! RS 0.6
'v-;" Ta +-ﬁ .(—Q - e ”nﬂ ea “:O
Ay PJ-‘- (cos eo)
m#£ 0 a
%0 n (2-23)
_ \  -_= - P _ (scos §)
v [Tam )L 1[-03‘.'72_ 32"1] ;- 32
Vv T T/ w ° e 050 _
P'- (-cos 90)
RFO s

3.5 Potential on the Boundary for an Arbitrary Gap

With an arbitrary gap between the arms of the spiral the problem
of determining the potential distribution in the gap is complicated
by the mixed boundary conditions.

Exact solutions for some two dinensional potential problems
with mixed boundary conditions can be obtained by using conformal
Aapping techniquenu. Yor example, an exac: expression can be obtained
for the potential distribution across a slit in an infinite plane
lhﬂtlz. For a nmall gap in the¢ equiangular spiral structure the
potential in the gap might be approximated by using the distribution
obtained from the plane sheet case, however, there does not appear
to be & simple method of deriving an exact expression for the potential

in the gap. Any method seems to depend on an iterative procedure,




the siml tanecus solution of an infinite set of equations, or the
aquivalent However, if the gap potential is approximated by using
& fimite number of terms in the Fourier expansion of Eq 3-16, the
leist squares criterionm»provme_l e mathod for determining the best
wvalues for the coefficients. Approximating with 2Msl terms of the
series and usinLg tl'fq\_ subrcripts I and II to identify the spproximate
@olutions for 0(6 nnniﬁ?& respectively, the expressions for the
potential are tro- Bqs. 3-15 and 3-18

(cou Q) J;'.'r
jg a
C e 0 <8
. ;F(Cos e ) °
Z 48
Aa=-M a
(3-24)
-‘ (-cos ©) a
c, Js ‘il
. e 97790
(-cos Oo)
m=-M J \
In temms of C_the potential at 6 = 6 is
n . 0
YR
VI(OO,T) ya C e :Vx (Oo,‘r‘). (3-25)
B=-)

For -rl<-r (T, the error in the potential due to using a finite number

of teras is

2

5T
Vo - C- 2
a=- M
and for 1'3<T <*r4 the error is
M JET
-Vo - c. ]
ae =

Yor 6<O_ the normal derivative of the potemtfal 1s

|
- dP'. (cos Oo}

n
WIJ - A S ry
=0 . do ¢ (3-26)




where
d P (cos@) d p‘_ (cos 6)

n o
5 R
de - de ‘ 0=06
o
and for 8>6° ‘
dl" (~cos 6 )
By = 0
I - B 8 .
56 0=0_ - n - de (3-27)
n=~M
As the normal derivatives should be equal in the gap at 6 = 90, the
error is "
"vz] 'S R S &
20 0=f . =8 _ A m (3-28)
[o——
where n=-M
dl’“ (cos 6 ) ap" (-cos 6 )
i 0 JE o
a A
Vg = d6_ - a6 . (3-29)
D.- (cos 8 ) . (-cos © )
0 n (¢ ]
5 %
The mean square error M over a period is
2 2
M
- 73 J—:—T 13 JET
M= f Vo - C, ® dr + YoCn © dr
Tl n=-M Tz ns-M
2 ' 2
T4 = T +ame 5o
+ vo + C. e dr + y-C-e dr
T A =x~M ol T‘ | B= -
(3-30)

By setting the derivative of M with respect to each C_ equal to zero,
a system of 24 + 1 equations and 2M + 1 unknowns is obtained fn- any
nin-zevro width of the spiral arms, As ‘Jo ia real, C_. is the complex
conjugate of c., and the equations may be reduced to M + 1 equations
and M + 1 unknowns, Using * to indicate the complex conjugate, the



first of these equutions is

M
o (73~ Ty Ty = T - vrg) +ame vy ] = ) v
* M=l
CL *CL]s‘i [T - T - T +'r] {3~31)
[ Em n -ml o' 2 1 4 3 ‘
ad the remsining M equations are obtained by using integer values of b

from 1 to M in
M

C; [(1‘2 - ‘t'l + T 1'3)(1 - ypyb#) + Za ypy;] +Z C: Lp_.(l - ypy;)
mnx]
RED
P P p P
v [ej'i T2 R4 *"ETa“
o

. a
. - - R o - -
+§ CL 1 YY) 3 e e + e i(__ )

ax0
k
. J%’ 2 I - 73
t& = = e - e + e - @
J ‘ (3-33)

The simul tancous solution of the M + 1 lineur algebraic equations of
Eqs. 3-31 and 3-32 gives the best values for the (“'t in the least

where

squared sense for arbitrary paramcters in the spirsl structure, and
Bq. 3-24 exprerses the potential in terms of the C.'s.

Even though Eqs. 3-31 and 3-32 may be simplified somewhat by an
appropriate chcice or the various parameters, the labor involved in
making & numerical ceslculation of the potential does not seem justified.
The static solutions were originally considered to obtain a feeling
for problems with spiral boundaries and, also, with the faint hope that
there might be a simple relation between the static and time-varying
solutions. The fact that relatively simple expressions for the
potential can be derived when the gap between the spiral arms is
small indicates that it is worthwhile, at least for this specisl case,
to consider the much more difficult problem of determiniuy Lhe

electrrmagnetic fields produced by the -quiangular spiral antenna.

3.6 EKxpressions for the Electric Field Intensity

The three spherical components of the electric field intensity




M. Nt

can be determined by taking the negative nf the gradient of the potential,

E=~ grad V

(3~34)

The resulting expressions for the electric field intensitier in terms

of the C '8 for <8 are
» O

= P“(cos 9) n
x 1 . % 3
- > C e
r T a m_m
P_ (cos 6)
= o
PR Ju
- d"u (cos 6)
\ ’ 3=
2
g =1 ) . de .J‘E'
e r n ’n (cos 8 ) (3-35)
{ m o
Rx - t;
n
) 4 (cos 6)
5 5T
E, = *-*'-—]:-——- - Jm ('h 2 e ’
® T sin @ ™ (cos 8 )
m o)
R~ @ Jl
and for 6:>e° the expressions are the same except that P- (cos 8)
| Ye
and d?’; (cos 6) are replaced hy rF- (~cos 8)
Y2 R
de
and dPP‘ (=cos 6) respectively. It is noted that Er and %¢ for any
J__
a

dae

spiral structure and alli 0 are simply related by

for the static fields.

(3-36)



4. THE ELECTROMAGNETIC FIELDS

4.1 Intraduction

To determine exact soiutions to a general antenna problenm,

!
Maxvell s equations are often used as a starting point. In differential

)

fora for a homogeneous, isoiropic, sourcefree region they are

Ourlgn'*p%

_ (4-1)
= B
curl Il_ = € 5t -
The el imination of :If (or E) in Eq. 4-1 results in the vector wave
equation
1 curl ¥ + p ¢ in- =0
curl curl E + p 8t2 = (4-2)

in E (or :l'l:). By considering monochromatic sinusoidal oscillations
the time dependence may he removed. Using the complex mumber
Juwt

time convention

= Jot
E=nexe ] (4-3)
H = Re [_}1 e"wt]a

and the vectc: wave eqiation reduces to the vector Helmholtz equatinan

representation with e

ir E (or _l-!_)

b
.

curl curl E A"E (4-4)

with 52 = wzp.i.

It is desired to find solutions of Eg. 4-4 which satisfy the boundary
conditions of an equiangular spiral structure and meet the physical
requirements of an electromagnetic field.

4.2 An Orthogonal Spiral Coordinate System

To obtain the needed solutions of the vector Helmholtz eq.u.tion,




it is very desirable to huve aa ozthogpnal coordinate system which ''fits"
the boundaries of the equiangular spirsl structure, When .he sntenna

is developed in the plane 8 - wy& sn orthogons]l coordinate system which
"#its' the antenna way be developed., In terms of the usual cylindrical

coordinates p, @, and z let

§-=pe*?
n=p e¢/‘ (4-3)
T =2

and {, N, and z form an orthogonal system. In the plane z = 0 a line

of constant { coincides with an cdge of the artenna, and lines of constant
N form & gt of equiangular spirals which are perpendicular to the edges
of the antennn, However, this coordirate system is not one of the limited
nuiber of orthogonal systems in which the vector Helmholtz equation is
sejarable, ard no method could be founid to adspt it to an exsct solution
of the equiangular spiral antenna proltlem. This system .8 useful

in solving spiral problems in which thure is no variation in the z
direction, and is mentioned here as it seems to be an ''obvious' system

to use.

4.3 An QOblique §oiral Coordinate §ystem

The fact that the static potentials can be exp essed in terms of
only the twn variables s and O suggests thair use as the basis of s
spiral coordinste system. The time-varying fields can not be expreised
in terms of s and @ only, and the ''logical'' choice for a third varia%le
is one which will complete an orthogonal systea. Letting p =p(r.6,¢)

represent the third coordinate variable, & unit vector 3 which is



riormal to a surfmce of constant p is given hy

A grad p

= (4-6)
2= Terad P|
A
To form &n orthogonal system P must satisfy
A A
p=8x8 (4-7)
A
where s and g are unit vectors normml %0 constant 8 and p surfaccs
respectively. The expression for ﬁ is
A
"\“Eﬂdl,, sin & i}_ 7 ¢ .
= jgrad s 2 2 2 2
‘ ‘A + 8in O Ja + gin @ (4~8)

Combiaing Eqs, 4-6, 4-7, and 4-8 gives

gridp a A sin 6 $
|crad B 2 2 2 2 | =
a8 + sin 8 & + Bun O (4~9)

which iLeads directly to the three separate equations

2
Op a Op dp r sin” 0
= y = d = ad ! »
L e ol ek ML -
a + sin @ a + sin O

(4~10)

From Eq. 4-10, p must be both indepenrdent of &, and

8p or - a
B r sinz ]

The desired function p(r,6,¢) does not exist, and it is not poszikle

to form an orthogonal coordinate system usings and 9 us two of the

variables,

For lack of a better set, the variables

u = fr
6 =6 (4-11)
B = re‘.¢

are used. This oblique coordinate system has two distinct advantages.

It pernits separated solutions of the vector Helmholtz equation which



are similar to those‘obtaxned with the spherical coordinate systes
Also, with it both tlLe vector Hrlmholtz equation gnd the houndary
conditions are independent of B, As this system is oblique it is
often convenient to express the various components 5f the field
vectors in a mixed system using the spherical unit vectors,g,‘é,

A

and ¢, and the spiral variables u, © and s, At times the spiral unit

vectors é_and P given by

A . sin © A a ‘5
T VL2 2 -~ /2 2
a + sin © va 4+ 8.1 © (4-12)
Fa FaY
P = a _ £ . sin © f?
“/az + sinz e v/az + sin2 e

and the field intensities in these directions will alsc be used

4.4 The Vector Helmholtz Equation with Spiral Variables

The vector Felmholtz equation expanded in spherical coordinates14
is given in Eq. 4-13. For f 4 0 in a mixed spherical spiral system
Eq. 4-13 becomes Egq. 4-14, Oriyinally the vector Helmholtz equation
is a function of four variables r, O, ¢h and B, but Eq. 4-14 (and the
boundary conditions) are a function of only the three variables u,

8, and ©.

4,5 Separated Solutions

As ﬂaxwell's equations include the relation div E =0, the vector
solutions of Eq. 4~14 may be exrressed in terms of only two scalar
functions. One of the scalar functions can be chosen to gensrate a
transverse electric (TE) field with Er = 0, and the second scalar
function chosen to generate a transverse magn2tic (ITM) field with
H. = 0. Using a prime to indicate the fields of the TE solution

and double prime for the fields of the TM sclution, the teotal clectric

- e e e— gt
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and magpetic fields are

£=E+E
H=H4+n" (4-15)

Considerirg first the TE case, a scalar function IT'= I (u,n,%) which

glves a field with £’ = 0 may be derived from
r [4" /
/ curl ¢ I

E =3 ' (4-16)
E'satisfies all three of the equc tions contained in Eq. 4-13 if n’

is a solution of

! - 2 ’
)
'i'i'xli"é'[gi "*“"%’}*“**’r—)sga"r“““;-’;a
) sin 6

28 som 28 2.

+u W(——B—)Jr -8:2—+u (4=-17)

The solutions of Eq. 4-17 will be obtained in separated form, and as

more than one of the separated solutions will be needed, let
R
,_Z’ .
= E‘"x Tk (4-18)

where A‘;‘ is a conatant andZ: irdicates a summation over all appropriate
K

values of the separation constants. Making use of the same substitution
that proved useful in the static solutions,
T = 1ln 8,

' satisiies Eq. 4-17 if ﬂ is a solution of

1 [ o .2 8%y’ K azz-;( y o
(sin © + (14»-——— ) —— % u + u ( J
1) ’56“] ain 6 Br2 Judr u or
8%y
+ u? ---7," ¥ uz‘lx x 0 (4-20)

&~



Asawming a separsted solution of the fora

: K
T, = U(u) &0) o (4-31)

vith U independeat of ¢ and 7, and- O !ndop.ondont of u and T, TI"’

is » solution of Bq. 4-20 £ U and @ satisfy the ur aary differontisl

equations
. 2
494 ctne J94 [viri)- ~2 ] O u0
a9 sin? e (4-22)
)
sad o ;u-g +£ 20 ;g +[v? - Y- 0 ¢ oy

¥ is = separation comastant, and the appropriste values for v.and »
sre.still to be determined. Te Mave fields which vary periodically i
§ with & pericd of 2¥s, m must be intogral. It will later be showmn
that the required values of v are cowplex,

En, 4-22 is similar to 2Zq. 3-10 obtained 4n the st. ~ solutions
snd is a Zorm of the asmociated Legendro equation cf drrece v ar
order m. The two linearly ‘rdepenident :molutions of by. 4-22 s the
1ssociated Legondre functions of the firet kind s ¥ (cos 9) an ¢ -
second kind Qv. {(coe §). For m xzero or a positive integer 0 8 &
30 solutions of Eq. 4-22 which arc f£ins - 't 411 real values of A4
unlsss v 1s &n intogor greateor tham or cqua, tow 3Simeo ¥ 3 aot to
bo ar integer, it ia agais necossary to considor 3 lutiaws {° two
regions as 11lustrated in Pig. 4. ¥For tho required v u.les of v,

Qv' {cos @) becomes infinite both at 0= 0 and ¥ and 1is not isoful
for reprosenting a phyaical field. Pv' {cos 0) 1s finito for all O

except § = ¥, ana fur B Xero or a positivo integer is given by
» »
(=Y'I (femid) x 318 19 F'(._V,w-“: "y sin2 g,

2 I (v-mil) »’

r: Ccos 0) =
{4-24)

£



and for m a negative integer by

m- . ‘
Pv' (cos ) = t’;‘“ L F(v~n+1, -M=¥: l-m; sinz g—)
2" (-m)! (4-25)

Pv‘ (cos ©) may be used in representing the fields in region I for
6< 60, and Pv‘ (-cos @) used in region II for 6> eo*

Solutions of Eq. 4~23 can be expre«sed in terms of the Bessel
function:ls ap

-
Uu) = au % Z  (u) (4-26)
v+

where zv+*(u) represents a Bessel function of corder v+i. 'utsonls
has given a very detailed account of the properties of the Bessel
functions of complex order, The Bessel function of the first kind

Jv+§(“) of order v+iis defined by17

= ()PP

Tvit™ =/ W IO (4-27)
P-0

For complex values of v, J&+i(u) and J_v-*(u) are linearly independent
solutions of Bessells equation, and, therefore the needed solutiune of
Eq. 4-23 can be expressed by using only Bessel functions of the first
kind.

Using the subscripts ] and II to indicate solutions valid for
e reo and 0.>90 respectively, the general forms for the scalar funciion
Il 'which generatex the TE part of the fie.d are

for region I, © - GQ

] n
nx = { A " uiu a J gu) p m {cos @) e 2
4 12 v
vm

(4-28)



tur region X1, 6)60

¥ 32
/T o YR {uy _m a
Hx B, Wu Jvd Pv (-co8 Q) ¢ (4-28)
vm B
In a similar manner the expressions for the scalar II” which generaves

the TM pnrt of the field are

for region I, 6< G.o.

n m
-3= J=r
/,__chli a () _m a
HI = 5 wu JW P.‘.; (cos ) e
m
for region 11, e>eo (4-29)
m m
-J= J-r
i “2: m § va (W ,m a
IIn = Bp u‘u Ji‘q.} Pv (-cos ©) e

tm
where v 13 the separation constant,

From Eqs. 4-16, 4-28, 4-29, and Maxwell’s equations, the foilouwing
expressions for the electric and magnetic fields with spiral variables
miy nov be derived,

Tk Components - Region I 8<6

0
1= J’g
' ¥
E. =0 ; a o (4-30a)
. i Jm o, m a (uy _ m a
Bg =~ Usin® ZAV G uiw “ Iy B, (cos 9 e (4-30h)
my

) m
I }‘ A,n uiu-—j; ; (1) de (cos 8) eJ-Ef
(] u v w de (4-30¢)

™y

|
o1 w3 %
- » Y. X
Jﬂﬂr = ;! Z (v+1) Av uu Jw) Pv (cos 8) ¢ (4-30d)
m'




'5’;--"1 - ! * - n :‘r
..j'qnf = .3,:,, 7 AI " uiu Ja, ‘..,?-.J (U)» - (u)iil’v(coa ) eJﬁ
3 v wvd v a8 (4-30¢)

-J"H T ¥ Ai ‘(3—'—-) uiu*J; “, -’f-J (u) J (")r P‘{cus GD)e}J;:TT
¢ l u ved MY v

usin 6 v s ¥
(4-301)
T Components -~ Region I 840
n -
7 Y -J= J=-
E - -1-54 sa) A™ ude r g i(“) P," (cos ©) e °
u m v v+ (4-30g)
Y n n
. 1 ym “‘u-,}; -2 ;5 () ; (u) d. P, (cos 9) eJ:T
e u v RS 7® RS 40 (4-30h)
m m
v _ _ A ‘m,m 4 X [ v {u) (u)| .= ST
Bp= "t eino Z‘; (v - Vv o4 Pj(cos 0)e
(1-301)
-JUH* =0 (4-303)

3 -1 J=7
. __ ', .m a () , m 2
-Jﬂl‘e =~ 3 in 0 "ZAV (J:) u’u Jp.‘_* P‘} (aos 8) e (4-30k)

" n , n
- T
Y - 1 ‘-yA‘- u‘n J: ; () d Pg (cos 0) ej; .
d =" 1 é—; v Vs a8 (4-301)
In region II for o) 60 the general erxpressions for the fields are the
same as those given in Eq. 4-30 with A:., A;‘, P "(cos 9),
» n
d Pv (cos 6) ' d P, (cos @) 'm Am
.3 ) PV (cos 6), and I replaced by Bv ' Bp ’
d Pv-(~cos 9) d P,p'(-cos 8)

Pv-(ecoa 8), - - ' Pp‘(-cos 6., and

de de

4,6 The FMelds from Speciiied Conditions on th» Roundary

. ‘'m "a _'®m ‘m
The values of v, m, Av ' Ai’-' , Bv and Bﬁ o1 Eq. 4-30 can hu

deiermined in terms of the tangentiai electric *inld a1t O = 80.



For an antennsa developed on the cone 6 = eo vith one conducting arm

between T and 72" and the other between 73

periodic in T; the tangential field intensity over one period muy

and ’1'4, the fields are

be expressed as

4

T
lr]moso ST T, T KT

T <1< T +2%a

‘ T <
= f(u,T) 1'2 < 1‘3, 4 1

(4-31)

!4)]9-'96' 0 R LPY r3<'r<'r4

T T T T T <7177 e
’E(“’) 2< < 4 14'2?

3’
f(u,7v)and g(u,T) are the r and ¢; components, respectively, of the

electric ficld intensity in the gap and are assumed specified.
.

!
As Br = 0, AV v

For any constant u, if xr]

n ‘m
and B, are determined from E ] o=6_ only.

om0 in one period is continuous except
o

for a finite number of finite disopntimities and has only a finite
nuaber of maxima and minima, it may be represented by a Fourier

series whose coefficients are functions of u alone.

[

I

Thus , .
E Jguo = Z T () e (4-32)
o M~ e
with ) T3 -3 L Tyt2m -9
t'(u) = mf f(u,7v) e dr +,m | f(u,T) e dr - (4-33)
T2 Ty

Msking use of Gegenbauer's generalization of Neumann's expansirmls,
ufm(u) may be expanded in a series of Bessel functions. Considering

uas a complex yariable, if ufm(u) is an entire function it may be




expanded in the series

o= -2
‘m -3 “a (u)
uf (u) = Z ¢C m u “u J n
%‘ M mb S (4-34)
n=(
which convaxrges for all u., The coefficients c - J— may be found by

8
making usn of Gegenbauer's polynomial ﬁ( u) defined by19

Hn’x(u). g»x) Z 1‘__2;:51(%) ms5

H (u) and the Bessel functions of the first kind satisfy the relations

n,K
-K (u) (u) 2 2
k//ou J . X k, K du =0 kK % n

o
(4-36)
-K (u)
L/} RPN R TEE  ?
c ’

where ¢ is a closed contour encircling the origin once in a positive

[\

direttion, Using these expressions, C -~ J—'— can be expressed in terms
a
of t-(u) as
\\. (u)
cw-"! :m / u (“’H ,)w- du, (4-37)
¢
or in terms of f(u,r) as
. . /:» (713 'J'Er ,—~-'rl+2ln __J_ET 7 H (u)
C R = —3 j , uf(u,7) e dr + uf(u,7) e dr a du
mJ‘ Ja(27) d .«,:'r e n, b.’;
2 4 .
(4-38)
E ‘ o=o0_ has now been expanded in the double series
= ¢ »
\ -.-.:.’. (u) J.!T
E_| = /) C.luz“’:J mel®
rioeo, —a Mg u nede g (4-39)



Cosparing Eqs. 4-39 and 4-30g the characteristic values of v are

- »n
Vo= eyo (4-40)

with n taking ou integer v:lues from O tc +°c, and m integer values

Lyom -oc to +00. Also,

t
b |

c ., ..
A" = A“. = MJ:
v ntdg (2+33) (2 1+ 57) p u (608 8)
nt3g
(4~41)
and "u
Bn. = B“' A= MJ—
a

Therefore, Eqs. 4-38, 4-41, and 4-30 used in this order give explicit

expressions for the TM components of all the electric and magnetic

fields in terms of the specified tangentiul electric fiedd in the gap.
After the T™M components of the field are determined, the TE

components may be obtained in a similar manner.

Expanding l¢] =0 in a Yourier series,
[

l{' =6 = Z g.(u) e *
A
0O o e (4-42)
witax
T T +2%9
3 -12r /‘ 3T - 71"2':,‘ -3
2ra ¢-(u) = g(u,Te Bars g(u,T)e dr -J Ed)_, o6 © ar
T2 J T4 " "
(4~43)

Expanding ug, (W) in a nariea of Beassel tunctionu,
:ﬁ ‘m ] J" (u)

u) = C .m
n=-]
wvith
\
C'J_l_z-i-:-— ug “)Hm{u) a du
Y c (4-45)
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These equations express E’¢; 6=0 in a double series as
0 ,
7 \ . - =
Jeo 5T pento gt
Mz~ ne-l (4-46)
Comparing Xq. 4-46 with Eq. 4-30b the characteristic values of v are
V=mn4+J- (4-47)
with n taking on integer values from - 1 to +e, and m integer values

from - <o to +<o. Also,

"m
-C
AR e nelg
v n+j— n ’
a d pn+J-:- (cos 90)
de
and (4-48)
/
-C " n
''m 'm r.+.1;
Bv = Bm_ J—'— =
Py d Pn"’JE (-ros 0 )
de
In terms of g(u,7). Eq. (4-45) can be expressed as .
el T )
'm 1 3 -J%r Ty 'J’Er A W
C m=x= ug(u,T)e dar + ug{u,T)e dar
n+Jj- n+l, - §j—
a ja(27) o - T
| 2 4 —
[ m 'm _—
C n C n
. Im n+1+J;- ) n-*lv'rj-a-
0 0 | (nelegD) (2ne3028D)  (nedD) (214280 (4-49)
- & b ]

|

where C " n is taken as zero for k<O,
k+337

Eqs. 4-49, 4-48, and 4-30 used in sequence give explicit expressions

for the TE components of all the electric and magnetic fields in

terms of a specified tangential electric field in the gap.

a



4.7 The Mixed Boundary Conditions

Having derived expressions for the electromugnetic fields at all
points in terms of the ‘angeniial electric field at 6 = eo, one 18
faced with the more recondite problem of determining Etan at 0 = ea
when the antenna is excited by a source at the origin. Assuming Etm
in the gap, vnd from it calculating the performance of the antenna,
is essentially the equivalent of assuming the current distrihution
on an antenna. Useful results are often obtained from assumed current
dist ributicas, and an assumptic. for -E-tan in the gap based on experimental
mseasurements could be made. However, this procedure somevhat avoids the
problen, and 1t would be much more desirable if exact expressions could
be derived. The cygrrect E-tan in the gap will m»ake H an cont inuous
across the gap, will correspond to a finite input voltage at the origin,
and will make the origin a source of energy. The complication of
waking Etm continuous across the gap is due to the fact that there
are 10 solutions of the associsted Legendre equation of order m and
degree n + j-:- which are finite for all 6. This makes the general
problem one of mixei boundary conditions with Etan specified as
zero over the surface of the metal! arms snd -‘-‘-tan specified as continuous
across the gap. The solution of problems in electromagnetic theory
with mixed boundary conui!iong normallv lead to an i1.eratlve procedure
where ar appr-ximate solution is assumed art from it better approximations
calculated, or to th: sim.itaneous solution of a large (infinite) sct
of s imul taneoi.s »~juations

Regardless nof the method us~d it seems high) . desirable at




thig point to consider spproximations or simplifications which will
reduce the complexity of the problem., Using the static solutions as

a guide, the logical simplification is to comsider that the gaps
between the antsnna arms are small. The equiangular spirel antenna
with small gaps 1@ a practical antenna having broadband characteristics.
To de termine !kan in a wide gap one must find both xr and E¢f each

of which is a function of two variables, u and T. PFor a narrow gap,
however, the electric field is ulways across the gap, so it is necessary
to find only l. which is a function of u only. Also, by making the
aras of equal width the variations of l. in the gap with u will be

the same for hoth gaps. For these reasons the next section »tll
develnp a routine for determining the electric field produced in a

small gap of a bslanced equiangular spiral antenna by a source at

the origia,



5. THE BALANCED ANTENNA WITH NARROW GAPS

5.1 The Electric Fields at © = o,

As the gaps between the arms of the equiangular spiral antenna are

made narrow, 1’2-& 73 and 74->1'1+211. If the antenna 18 also balanced

(1.e, the arms are the same width) ‘1’3 = ‘Tlﬂra. Without loss of

generality, the antenna can be rotated on the coordinate axis to make

T1-0

73 = Fa.

(5-1)

When the gaps are narrow it is convenient to consider the components
of the electri~ and magnetic fields which are in the directioms of the
unit vectors :s\_ and ﬁ defined by Eq. 4-12. Using Eq. 4-12 the s and p

couponents of the electric (magnetic) fields Es (Hs) and Ep (Hp) are

sin @ a
E = E ~- - E
(0]

s J r
y.2+ linzb \/a2+sin26
and (5-2;
] sin 6
=

E E_ + E
P r p ¢
/‘2 + linz e \/a2 + sina 2]

The s component of the field is 'across'' the gap, and the p component

is '"along'" the gap.

The fields in the gap are illustrated in Fig. 5. As the anitennu
urms are made of thin sheets of conducting material, the riicknaas ol
the arms A O is assumed arbitrarily small, but not zerc. As he gap
vidth A T approaches zero, Ep evaluated in the ,,up must approach zero
The field vectors satisfy Maxwell's equations and the weli Fnown

conditions at the boundary surface between different medi. Podn
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FIGURE 5 ELECTRIC AND MAGNETIC FIELDS IN A NARROW GAP
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(2 224
zero inside the metul arms, and since the tangential components of E

are continuous -cross a boundary surface, Ep is zerp jusi inside either

- edge of the gap at the points 7T = Tz* and T = Tan. If Ep evaluated 1in

th: gap 4id not approach zéro as AT—0, Ep vr2ould be discontinuous

& -

with respect to T between T = 1'2 and T = 'r3 . Bowever, this discon-
tinuity in Ep is not allowable as the media is uniform between T - 72*
and 1'3‘, Wnen the gaps are made small the determination of the tangential

electric fields on the cone 6 = eo is simplified anp the p compor.ent
approcaches zero, and only the s component need be found.

As the gaps are made small, Es evaluated on the cone @ = 60 is
zero for all values of u and T except T = 0, W& where it becomes
infinite. The integral of E-dl across the gap represents a voltaigo and
must be finite. Therefore, wher the gaps are small an approximation

for the tangential electric fields on the cone 6 = 60 is

Es]6=60 = F(u) [6(T-0) - 5(T-ﬂa)]
(5-3)
Eplee = 0.
o
6(1’—70) represents the Dirac delta '"function' defined as
6(1'.70) =0 T 4 TS
S(T-7 ) =~ T =7
0 o (5-4)
T 4€
8]
f S(r-7 ddT -1 |
T ~€ °
o

and F(u) is an arbitrary function of u still to be determined.




The voltage V(u) across the gap is given by

V(u) = j'x*dl (5-5)

v

across gap

Integrating Eq. 5-5 relates v(u) and F(u) by
u F(u)

(5-6)

-y

p V@) = ~
S2 2
Va 4+ sin Oo

Since the antennn is balanced the voltage distribution V(u) will be

the same for both gaps, and 1li.m V(u) gives the input voltage exciting
u—0
the antenna., By restricting the gap width to be very small, the problm

of finding all of the fislds produced by the spiral antenna has been

reduced to finding the valtaem alnne tha gan.

\

\J
5.2 Exyressions for C - m and C - n
n+J: n+Jg

To have the antenna excited at the origin by a finite voltage,

lim v(u) must be finite. Since V(u) represents the physical voltage
u->0

ohtained, it is reasonable to assume t-at V(u) is continucus and has
continuous deri.atives for all values cf u, and can be expanded in

the power serios

buP - (5-7)

It is assumed that this series converges for all values of u, and that the

)
series derived using it also converge. The coefficients cn:J: and
. a
C;:J! of Section 4 may be expressed in terms of the coefficients tp.
a

and, therefore, all of the fields exprus:ed in terms of a single set
of unknown coefficients. The substitution of Eqs. 5-3, 5-6, and 5-°

intn Eq. 4-30 gives an expression for C:‘:J

mn as
g
a

T —



for m even

g
Cn+‘1; = 0
(5-8)
for modd, n =0,1,2,3,...
Sén m
. sin 0 n ; [(n-ped+3=)
o 0 neded— n a
Cn”_:_l —y— @) & (n+d+37) ; “Tp‘ T bn-2p,
b .
\
Subs tituting into 4-49 gives C . R as
n+J-;
for m even I'm
Cn+J-‘~ =0
a
Im
for modd, n = -1 C-IJ!;O
+a (5-9)
for m odd, n = 0,1,2,3,.
, M
‘m ) (2)n*‘*J:(“*§¥J-:-) 2§(nel)p, (n-ped+J=) n
Cn+J-! = - = Z —op 2 n(n+1)+J:(n+2p+1) bn+1-2p
2 T(el3D) (ned3) 3 p!(3)

One aspect in the derivation of the preceding equations should be

consicr-ed here, 1If f.(u) is derived from EBq. 4-33, it is
sin oo
f-(u) = F(u) m odd

1:./.2 + unz e (5-9)
f-(u) =0 m even
which combined w.th Eq. 4-12 expresses the variation i{n electiric field

intensity along the gap F(u) as

Ma /‘2 + sinTG -5 1=
~ () vm a (u)

sin @ cn an v Jn )03—!

o +‘: + a

n=0 (5-10)

N W

F(u) -

F(u) does not depend on the method used in solving the problem; that

is, F(u) must be independen: of m and n. For any one valie of n,
-:J-
a (u)

u Jm-in. is not independent of m, and the series must be summei




over many values of n to obtain a solution. If only one value of n
could be used to reprexsent a solution, the operstion of the antenna
could be des:ribed in terms of “‘modes” existing on the structure, and
it would only be necessary to determine what "mode’ is excited by a
source at the origin. Unfortunately, the summation over n must he
made;and P(u) does not seem to have a simple mathematical form.

5.3 The Continuity of Tangential E’tral Regions I and 11

If the voltuge along the gapV'(u) is to correspond to that produced
by a source at the origin, it is restricted by the condition that the
components of H tangential to the cone © = oo must bhe continuous as
the gap is crossed from Region I to Region I1. Referring again to
Fig. 5, the s component of H must approach zero as the gap width is
made small. [n terms of the magnetic flux density B given by B = uH,
any time-varying component of B' is zero in the conducting arm. The

normal componeat of B is continuous across a surface, so B' is zero

3 L]

gap did not approach zero as A T— 0, B_ would be discontinuous in

Just inside tl!e gap at the points v =‘Tz+ and T = T It B' in the

a continuous media. Therefore, B.'—’O as L. T--50, and H. in the gap
approaches zero as the gap is made narrow, To insure continuity of

the tangential ccaponents of H in the gap the r.latioa to be enforced is

H = H
n] gap p!] sap (8-11)

where the aubscripts I and Il refer to the field evaluated froa e<9o
and 9.>00, respectively. The magnetic fields in the two gaps are the
same except fc. sign, so it is rufficient to enforce Bq. 5-11 only at

the gap at T = 0,




In Appendix B expressions for Hp evaluated at the'gap are derived
in terms of the coefficients bp of the power series expansion for V (u).
It is shown there that for Eq. 5-~11 to be eatisfied for ill values of
u except U =0, u =u, the bp coefficients must be related as foilows:

for p=1,23,...

(5-12)
ol 2 p-1 n+l 2n+1 ‘2
sin” @_ (€ VR ¢ i ¢ .12 T8 F v
2 R n u“]xznj-'-(cose)
m=-.~{ a n (p-n~1)! (2n¢,j-‘-)(2n+1+J;)I‘(;»n+§+J:)
m odd
el n¢l 2n»~]1 |
Z(-n (2" an-4e3] (2n-1)3n) +17 (4n-2p-1] "
+ . M I~ (cos o)
n= (p-n)! (2n + J-E-) (2n-1+J-:-)1‘(p+n+i+J-E) Lo 2n-1+3'£
by = -
2p wo 4p-1 _ ~—~ R
Z-v =P @ (2p-1) (2p) [+ 2p-1+J-:- (cos 6 )
b Y
M= o0
m odd
(5-13)
o0
sin o p-1 (_1)n+1 (2)2n+2(2n_’%h’!)
ZA = {Nn o ‘(cos Oo)
m=- o 2 (p-n-1)] | (2n41 +J—) (2n+2+J-)np+n+5+J:) v<2n+1+ja-
m odd
P n+l 2n -
(-1) 777 (2) (zn+§+3-)[2n(zn+1 )+j—2(2n-p)]
+ {N'177 (cos )
Z | 2 1 ll, m" 7ol
o (p-n); (2nv1+.1;)( n+3;)f'(p+n+;+.);) n+j- J
b2p+1 = )

(cos Oo)

Z P 2 (apy@pe1) (.

Rs- o®

m odd

2P+J




wvhere m n
ka P“*JE (cos 66) +j:(-cos e )
‘ n (cos e ) = -
a d P:+J! (cos eb) d P:+32.('°°8 eo)
de de
n m
d Pn*JE'(COI eo) d Ph+j5.(-coa 90)
! de
C;?. m (cos 0 ) = do -
- nedg ° PT m (cos ©) P* m (-cos @)
n+J; 0 n4+j— o
d P . J! (cos © ) dp:+35 (cos O)
a
stands for
de de jo=o
n n °
I'(2n-2k di-J:)
M = b
n }o k@3 2k
L m
IN2n-k-4+3-) .
M, = - [(’"'1’(3“)*152‘“*k)] P2(n-K) for n 4
N ka0 k(@) - P
p
I!zp-k-§+3-0
ln = £ = (2) [(29-1)(39) J— 3(P+k)] bz(p-k) for n = p
n
, Z nﬁn-kq*.);)
N = b
R x?(zfik 2(n-k) +1

n

, Z 1‘(2n~k+§+.j;-) .
N = n(2n+1) +J—(2n42kel) | b for n + p
nT o kl@> [ . I ®acn-ny a1

1129-k+i+J-

N = -——-———i———{2p(2p+1)+J—(29+2k+1)] b for n
n k=1l (2) 2( k)+1

H)
k-

Eq. 5-12 expresses bﬂ in terms of bo; b4 in terms of b2 and bo;

b6 in terms of b‘. bz, and bo; etc. Bqg. (5-13) expresses b3 in terms

of b‘; b5 in terms cf ba, and blz etc. Therefore, all of the coefficients

in the power aserier expansion ar¢ expressed in terms of ho and bl'

e - S———————— Y



L

Since b0 is proportional to the input voltage, the coefficient bl

is the only one still to be dete¢rmined.

5.4 The Far’tields and the Radiation Condition

The relation between bh and~b1 must be such that the radiation

couditionzl is satisfied. This condition insures that the antenna i=
8 source of energy, and for a finite antennr requires that the Tlel:ids

at large distances from the antenna be represented by divergent

traveling waves. Making use of the relations

a
u e =

Y - S Y- L
e (5-14)

and 1im  (Br)! .xn:g:;,_ = (?)’ cos [Br-}l(m»h-J-E)] (5-15)
a

r—» oo

the electric fields for large values of r are given by Eqs. 5-16,

5-17, and 5-18, The wagnitude of Er variss as lﬁ for large r, and
r
thus becomes insignificant. As the antennn considered lere is infinite

in extent it is not possible toc be = large distance frim it, However,

since only the relation between bo and b, is decired, it can be obtainea

1

by requiring a wave traveling ¢way from the origin ir one direction.

The most convenient direction to choose is 6 = 90 as

P - ma (cos 0)
n+J:
1ia ~in © = ¢ for all m except m - + 1

6-0

d ’:‘JE (cos 6)
de

and =0 for all m except m = + 1,

0=0

-

and the summation with respect to = becomes trivial.
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Using tha e‘pt time convention a wave traveling away from the origin
jaries u% e-‘mr. Making use of the fact thut many terms fromm = 1

asnd m= -1 are related as complex - .njugates, E0]6=0 and E¢]9=0 in

Iqs. 5-17 and 5-)8 will have this r variation for all values of ¢ if

00 v 1 ‘
x| Cad (melsdy (nedy €19 )
/[, e 2 + Y 2 U=0
n=0 J (cos 60) d PM‘J- (cns eo)
a a (5-19)
dé
[
Substituting for C 1 and C"1 from Egqs. 5-8 and 35-9, and letting
J 1
N+~ n+J—
a a
- J
I‘(zn-k+§+-‘-)
M = 3k P2(n-k)
" k0 k!@) (n
n
l"(2n-k-§+%) 4
M’ = 2n(2n-1) 2(n4k) | b
n - & (;;ﬁ [ a ] 2(n-k)
n
_ IN(2n-k+ -g— &%)
N* = b
n 1 umzu 2(n-k)+1

Z I’(2n-k+§4—-) j
2n(2n+l) P(anzkd) »
—(';r—{ ) P3(n-ky 1
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Eq 5-19 becomes

{M) @2 (2n+wi) sine@ 1" (2. %*’g’)
é& el (cos © ) el Ponsls  (cos ) Yol
do (5-20)
) "f.‘(-l)n(z)zn(émh%) o (..1)“(2)2n+1(2n+ % +%) sin ©_ o
 pe0 | d pl J (cos 8,) al : P;n ui (cos &) | '[ n]/

de
The IS of Eq. 5-20 is proportional to bo’ and the RHS is proportional

to b . Therefore, it gives the relation between bo and b, required

1 1
for waves traveling from the origin for large r along the 6 = 0 axis,.

Eq. 5-20 is ' convenient form for this relation as ir", M, i;, and ixlx
n

are needed in Eq. 5-12 and 5-13 for the calculation of the bp coefficients.

9.5 The Input Admittiance

The input voltage V(Q) can be obtainad by taking the limit of

V(u) as u—0, and using Eq. 5-7

b

o

V() = 1lim V(u) = .
g .3 (5-21)

The input current 1(0) can be determinod by integrating Hj-¢dl around
one of the arms and taking the limit as u—p0. Using Eq. 4-30, 4-41,

4-8, and 5-2, an expression for the input admittance Y(0) can be

derived as oo (( 1) p (cos go) (-1) p (-cos Oo)’\
Y(0) = ooy - 3 o Z J_- B J‘ |
Vi) nb '1" 90 p=-=|d p‘- (cos ou) d P- (¢ cos 60) ?

modd/  J= | Y
de de y

(5-22)

———

B —
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5.6 The Problem of Numerica. Caiculation

To he completely aptisfying from an éngineering viewpoint, the
rather complex mathematical expressions derived for the equiangular
spiral antenna must be evnluated i‘of‘; various parameters of the structur .
The fact that the expressions obtained arc in series form makes them
well adapted for computation using a digital computer, It is presently
planned by the Antenna Laboratory of the University of Illinois to
program the high-speed digital computer, ILLIAC, to make numerical
calculations using the expressions derived here. Appropriate tables
of the gamma function of complex argument are available,zo but no
tables of complex order Bessel functions or complex degree associated
L.egendre functions are known. The series convergé most rapidly with
respcct to n vhen r is small. In the limit «s r—»0 only the n = 0
terns are needed, and the electric fields approach those given hy the
= tatli = solutiong, This fact makes the near field., including the current
d istribution on the antenna arms, tne easiest to calculate. It will
probably bc bctcer to use the conventional methods ol obtaining the
far fields for .. known current distribution than to use the series

d evel oped liere.




6. CONCLUSIONS

Theoretical expressions for the fields produced by an infinite
equiangulsr spiral structure have been obtained. It has been demorstrated
that the static electric fields are a function of only two variables
s and . Por the static case exact expressions have been derived for the
structure with nsirrow gaps, and approximats expressions using the
"least squares' criterion for arbitrary gaps.

For the electromagnetic prublem, solutions of the vector Helmholtz
equation suitable for the spiral geometry have been obtained by using
the separstion of variables techniqu? in an oblique coordinate systenm.
These soiutions express all of the electromagnetic fields in terms of
the tangential electric fields exiidting in the gaps c¢f an equiangular
spiral antenna.

PFor the special care of the balanced antenna with narrow gaps
between the arme, exact expressions for the fields in the gaps are
derived., These solutions make available a means of calculatipg the
input impedance, the current distribution, and the pattern of an

equianguls spiral antonna,
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APPENDIX A

If the potential on the cone € ~ oo is real, the solutions for the

potential in Section 3 are real for all values of © and T. This may

be shown by first combining Eq. 3-15 and 3-18 for o < GO to obtain

]
..-'1 P (CO' 0)
3 =
v(e,T) = , C- e

P:-- (cos oo) (A-1)

M o

from Bq. 3-17

T _+2%a v
1 1 %
c. = m V(OO’T) e dr

) (3-17)
"

¢, = (€_)°, and C_1s real 1£ V(8_,7) is real. By Eq. 3-11, 3-12,

and 3-13, P_° (cos @) = 1

and
n [ -m 1"
P _ (cos ©) 4 (cos @) -
n ]
5 2
- — (A-2)
p- (cos O ) P (cos 6 )
» 0 n o
J; "J:

Therefore, in BEq A-1 the m = O term is real; for other values of m
the + m and - mn terms are complex conjugates for ull values of O
and 7. This assures that the potentials obtained from Eq. A-3 or

2q. 3-24 are real 1or all values of 6 and T.




APPENDIX B

DERIVATION OF THE bp CORFFICIENTS

The relations between the coefficientc b b of the powar series expansion
for the voltage along the gap are determined by requiring that the p compo-
nents of the magnetic field at the gap from regions I and II are equal. By

Bq. 5-3 llp is related to Hr and !l¢ by

a ain @

| .ml +Mﬂ. (B-1)
P 2’ +stn®0 T A" +sin O ¢

Using xqs. 4-30, 4-48, and 4-49, n in region I is

g

n n
7 . -4 n (n+j-.-)(n+1+32;) (u) i
JQ\/- + »in onp-- MJ [ - J“‘%*J'E
n == ll
{u) P. (cos ©)
S L, . s | ’* JiT
] _ ‘
a0
m
iy - dP (cos ©)
© OE u u ". aJ :;) n“f:;ﬂ
,sin @ Z n+if %% d e .Jl-r
u » p® i
Whsapa-i (n+j:)(n+1+3:) n+J.« a (cos @)
(B-2)
The expression for llp in region II is similar.
Let
P:""E (cos Oo) ’:43-:3 (=cos Oo)
(5;?” 4 (cos @) = — - - (B-3)
a dPnﬂs (cos °o) d P:ﬂ_:‘(-cos Oo)

d e d 0



d P:ﬂ_.g (cos ao) d P:Mj;a_l_ (~cos GO)
o= B (OB O ) = =i 49 - - 49 {(B~-3)
5 20 ol O e | .
a t’iﬁs (cos Gb) Pzﬁ_: {~cos Oo) (Cont.)

Eqguating, np evaluated at T = 0, @ = 'o from regions I and II gives

60 0 n
n (n+j—)(n+1+J2!) (u) (v
a } - a a _ g (I
u Z *,Zér-sz uwue [ u { % J-: (J;) Jn~%+j‘££+js(c°'eo)
RAs-00 n=O
(u)
sin ‘_-_g, .c\' ua*u":J 1 -
2 L | .
+ Z m (cos & ) =0 (B-4)
Z—:, e (!NJ")(MHJ-) g’“’: °

If 5q. B-4 1s to be satisfied for all u exc-pt u = O, », the coefficients of

each pover ¢f u must be zero. Expanding the Bessol functions in a power

' series gives

-

a = o e (-l)k[n(lﬂ)ﬁ—(n-n)] é‘
2Ll net Faogy (00
Bye®

R=0 k=0 k'(z)""“’ * "" I‘(nau-u -) &

-

(B-3)

0

U e z Z Zw: 1y* (W)™ ::-1

e a=l keo k-(z)"‘“' e +.1-)(m-> F(aekejes®)

o

-y

n
x ,21‘-1*3_:. (cos Oo) = 0




Letting p » n + 2k the method of summing csn be changed as shown in
Pig. 6. This is not a rﬁrrwt as the terms in one row (or column)

are in the same order u» hefore.

' . - «©
NS N Z Zil equivelent to Z i
‘Aw0 k=0 p'=0 (n)=o
A - = d .
Z Z is equivalent toZ 2
—t anl k=o pul (n)=l
; ™M (n)=u, 2,4, 6, ... vhen p is even
() =1, 3,8, 7, ... vhea p 18 odd

FIGURE 6 THE SUMMATION ME.MOD

The coefficient of u 1is always aero for p = 0, and for the other coefficiemts

of u to be sero, for p=1, 2, 3, ...

i Z [n(aed) u.f(zu-p)]m"“é. P e (con o)
. (ta_q‘,' (’)idﬁ'. I‘I ( z%__s n nﬂ! negs co® %%

Re- (n)=o

p-n ¢ s
ol p (9 n-lojsan-lﬂ-:- (cos °c))

#lllﬂo =0

i R .
mwea (n)=l (t’!) ' (2)',‘*”: (n-ltjs)(ujs) P(!-'-;ﬂo ,)-:-)

(3-6)



t

Substituting the values of c *3_:‘ eénd C__, ,J;

for P=1, 2: 3:

-n n(cos Oo) -
81!; :] J (z) (u‘_i*}_)im”‘ 4‘(“ 1)

..._.._....... ) Zﬂn-k-
; (’ 23 | (nm1452) () r'(ﬁ*-'l—n-) [ (2)3%
no@ (n)=]

Z i fm"‘m“<n+w!)[==<°*“ﬂ""‘"’1

l.(-—-) ' (n¢1+J-)(n¢3-)I‘( ”""3 + J.:.')

l-;. (n)=0
n odd

<4(nel)
5 Ra-kejasD)

("’ x ) (32K

[n(n+1) «+ Hn«zkol)] e 2k el =0

m fiom Eq. 3-8 and 5-9 gives,

n—zk-l

(B-7)

Eq. B-7 them gives Bq. 35-12 when D is odd and Eq. 5-13 vhen p is even,
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